If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2=62
We move all terms to the left:
p^2-(62)=0
a = 1; b = 0; c = -62;
Δ = b2-4ac
Δ = 02-4·1·(-62)
Δ = 248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{248}=\sqrt{4*62}=\sqrt{4}*\sqrt{62}=2\sqrt{62}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{62}}{2*1}=\frac{0-2\sqrt{62}}{2} =-\frac{2\sqrt{62}}{2} =-\sqrt{62} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{62}}{2*1}=\frac{0+2\sqrt{62}}{2} =\frac{2\sqrt{62}}{2} =\sqrt{62} $
| -10q=4-9q | | 9/10x=8 | | 17m+17=2+16m | | -7y-4=4y×(8-6)-64 | | 10-t=-5t-6 | | -5x+4=-8x-7 | | 1+2+3k=10+2k | | -2z+10=-4z | | 4/9x=7 | | 10+z=-9z-10 | | -9j-4=-10j+5 | | -2x-3=-7x+10 | | k+20/6=6 | | -4z-6=10-2z | | -x+6=-2x-4 | | t/4-2=3 | | -1n=4n-10 | | -7w-10=-8w | | 8n+1=97 | | -6x+5=-10x-3 | | |3x|=5 | | -1n=n+6 | | 5x-3x+x+8=2x+1+x+x= | | k=-1k+6 | | 125-(6x+6)=6(x+9)+x | | 8z=5z-9 | | 7/10x=-7 | | h-61/7=5 | | x+152+x+27=175 | | 88=32+4z | | 9t+1=100 | | 3/8+x=-39 |